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Abstract

A sequential method is proposed to estimate the periodic boundary conditions on the non-Fourier fin problem. An

inverse solution is deduced from a finite difference method, the concept of the future time and a modified Newton–

Raphson method. Two examples are used to demonstrate the features of the proposed method. The close agreement

between the exact values and the estimated results is made to confirm the validity and accuracy of the proposed method.

The results show that the proposed method is an accurate and stable method to determine the periodic boundary

conditions in the non-Fourier fin problems.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

During the past decades, several researches have been

investigated the fin problems with the periodic thermal

loading [1–5]. Most researches solved the problems in

Fourier domain [1–4] but only a few solved the problem

in non-Fourier domain [5]. Yang [1] derived the analyti-

cally solution for a convective fins under a periodic heat

transfer. Eslinger and Chung [2] used a finite element

method to solve a radiative and convective fin. Aziz

and Na [3] adopted a perturbation method to investigate

the fins with various thermal properties. Al-Sanea and

Mujahid [4] used a finite volume method to study

the fins under time-varying boundaries. The above

researches are focus on the fin problems with the Fourier

effect. However, Lin [5] concluded the non-Fourier effect
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should be considered in the thermal analysis of a fin

when the period of the input temperature frequency is

not greater than the thermal relaxation time. Lin�s
research shows that the thermal waves in the fin system

are induced by the delaying response between heat flux

and temperature gradient when the periodic thermal

conditions are applied. This phenomenon may represent

time needed to accumulate energy for signification heat

transfer and lead to the thermal wave propagation with

a finite speed. Furthermore, there is no work on the

inverse non-Fourier fin problems presently. The inverse

problem is used to determine the base temperature of the

fin from the temperature measured at the fin tip. It is an

ill-posed problem because a small measurement error

induces a large estimated error [6–14]. Therefore, it is

necessary to develop an accurate and stable method to

deal with the inverse non-Fourier fin problems with

the periodic thermal loading. Through the inverse tech-

nique, the unknown periodic boundary conditions at fin

base can be deduced indirectly from the temperature

measurements at fin tip.
ed.
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Nomenclature

A amplitude of the input temperature

b thickness of the fin

C specific heat capacity

J error function

h0 heat transfer coefficient, defined as h0 = bk/

2L2

h(x) heat transfer coefficient depend on spatial

coordinate

H dimensionless heat transfer coefficient

k thermal conductivity

L length of the fin

Nt number of the temporal measurements

p number of grids at spatial coordinate

r number of the future time

t temporal coordinate

T temperature

Tb periodic boundary condition

Tin initial temperature of the fin

T b mean temperature of the periodic boundary

condition

Te environment temperature

Xm sensitivity function of h with respect to the

undetermined condition at m-time step

x0 vector of the initial guess

x spatial coordinate

Y measured temperature

x dimensionless frequency of the temperature

oscillation

x̂ frequency of the temperature oscillation

q density

s relaxation time

si,j error terms of Taylor approximation

b dimensionless relaxation time

l eigenvalue of matrix

g dimensionless spatial coordinate

n dimensionless temporal coordinate

h dimensionless temperature

he dimensionless environment temperature

hm value of dimensionless temperature at the

mth time step

U vector constructed from U
U calculated temperature minus measured

temperature

Uc calculated temperature

Umeas measured temperaturebUu component of vector U
/T
mþ1 unknown periodic temperature condition at

m + 1th time step

W sensitivity matrix

Wu,v component of vector W
D increment of the search step

e, d value of the stopping criterion

r standard deviation of measurement error

k intermediate variable

ki,j random number

Subscripts

i, j, m, u, v indices

Superscripts

exact exact temperature

meas measured temperature
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Recently, Yang [15] has developed a forward differ-

ence method combined with a modified Newton–Raph-

son method [8] to solve the inverse hyperbolic heat

conduction problems. In Yang�s research, the coeffi-

cients of the governing equation are defined as con-

stants. Then a stable condition for the finite difference

implemented in the problem is derived. As well, the

modified Newton–Raphson method is used to solve

the inverse solution. In this paper, the heat transfer coef-

ficient depends on the spatial coordinate lead to the sta-

ble condition for the numerical method is spatial

dependent. Therefore, it is need to select the stable con-

dition in the whole spatial domain. Furthermore, the fin

problem is under a periodic loading that is more difficult

than that of the non-periodic loading.

In this paper, a sequential method combined with the

concept of the future time is used to solve the problems

step by step. As well, a modified Newton–Raphson

method [13,14] is used to search the inverse solution at
each time step. In the proposed approach, the determi-

nation of the periodic boundary conditions at each time

step includes two phases: the process of direct analysis

and the process of inverse analysis. In the forward anal-

ysis process, the boundary condition is preset and then

directed to solve the temperature field of the problem

through a finite difference method. Solutions from the

above process are substituted into the sensitivity analysis

and integrated with the available temperature measured

at the sensor�s location. Thus, a set of non-linear equa-

tion is formulated for the process of the inverse estima-

tion. In the inverse analysis process, the modified

Newton–Raphson method is used to guide the exploring

points systematically to approach to the undetermined

periodic boundary condition. Then, the intermediate

boundary is substituted for the unknown boundary in

the following analysis. Several iterations are needed for

obtaining the undetermined boundary condition. In

the present research, the proposed method formulates
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the problem from the difference between the calculated

temperature and the one measured directly. Therefore,

the inverse formulation derived from the proposed

method is simpler than that from the non-linear least-

squares method.

This paper includes six sections. In the first section,

the current researches in the fin problems are introduced

and the feature of using the proposed method in the

problem is also stated. In the second section, a finite dif-

ference formulation for the non-Fourier fin problem is

stated and the stable condition for the algorithm is intro-

duced. In the third section, the characteristics of solving

the inverse problem are delineated and the content of the

concept of the future time, the direct problem, the sensi-

tivity problem, and the algorithm of the proposed

method are presented. Meanwhile, the criterion to stop

the iterative process is illustrated. In the fourth section,

the computational algorithm of the proposed method is

shown. Two examples are employed to demonstrate and

to discuss the results of the proposed method in the fifth

section. In the final section, the overall contribution of

this research to the field of inverse heat conduction

problem is discussed.
2. Problem statement

The inverse non-Fourier fin problem consists of find-

ing the periodic boundary condition at the fin base while

the measured temperature at the fin tip are given. Con-

sider an isolated straight fin with uniform thickness b

and length L (see Fig. 1). The ratio b
L is a small value

(i.e., b
L � 1Þ. This fin originally has a uniformly distrib-

uted temperature Tin. The adiabatic condition is applied

to the fin tip x = L. At a specific time, a periodic temper-

ature condition T b ¼ T b þ A cosðx̂tÞðT b � T inÞ is applied
to x = 0 where T b is the mean temperature of the fin

base, A is the amplitude of the input temperature and

x̂ is the frequency of the temperature oscillation. On

the lateral surfaces, the fin dissipates to environment

with a constant temperature Te by convection only. A

mathematical formation of the non-Fourier heat con-

duction is presented as follows:
eTxh ),(

)(tTbb Insulated 

L

x  

Fig. 1. The fin configuration.
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o2T ðx; tÞ

ox2
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¼ sqC
o
2T ðx; tÞ
ot2

þ qC
oT ðx; tÞ

ot
þ 2s

h
b
o

ot
ðT � T eÞ

t > 0; 0 < x < L ð1Þ
T ðx; 0Þ ¼ T in 0 6 x 6 L ð2Þ
oT ðx; tÞ

ot
¼ 0 at t ¼ 0 and 0 6 x 6 L ð3Þ

oT ðx; tÞ
ox

¼ 0 at x ¼ L and t > 0 ð4Þ

T ð0; tÞ ¼ T b ¼ T b þ A cosðx̂tÞðT b � T inÞ
at x ¼ 0 and t > 0 ð5Þ

where T represent the temperature field T(x, t). k is the

thermal conductivity and qC is the heat capacity per unit

volume. s is the relaxation time that is non-negative. T b

is the mean temperature of the fin base, A is the ampli-

tude of the input temperature and x̂ is the frequency of

the temperature oscillation.

The heat transfer coefficient h(x) is dependent on the

spatial coordinate and

hðxÞ ¼ h0H
x
L

� �
ð6Þ

where h0 is the heat transfer coefficient that is defined as

h0 = bk/2L2.

The dimensionless governing equation is

b
o2h

on2
þ ð1þ bHÞ oh

on
¼ o2h

og2
� Hhþ Hhe

at n > 0 and 0 < g < 1 ð7Þ
hðg; 0Þ ¼ 0 at n ¼ 0 and 0 6 g 6 1 ð8Þ
oh
on

ðg; 0Þ ¼ 0 at n ¼ 0 and 0 6 g 6 1 ð9Þ

oh
og

ð1; nÞ ¼ 0 at n > 0 and g ¼ 1 ð10Þ

hð0; nÞ ¼ 1þ A cosðxtÞ at n > 0 and g ¼ 0 ð11Þ

where g ¼ x
L ; n ¼ at

L2
; b ¼ as

L2
; h ¼ T�T in

T b�T in
;x ¼ x

_
L
a and he ¼

T e�T in

T b�T in
. h represents the dimensionless temperature field

h(g, n). b is the dimensionless relaxation time that is

non-negative.

The inverse problem is to estimate the periodic

boundary condition hð0; nÞ ¼ 1þ A cosðxtÞ when the

temperature field is measured at g = 1.
3. The direct solution of the hyperbolic equations

The proposed method uses a finite difference method

with the equidistant grids along the spatial coordinate

and along the temporal coordinate. The finite difference

method has been implemented in the researches of

Weber [16] and Carey and Tsai [17]. However, the stable
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condition of the above researches is not clear. Therefore,

the following derivation investigates the stable condition

for solving the equation of the non-Fourier fin through

an eigenvalue analysis. In this study, the spatial step size

is Dg and the temporal-step size is Dn. The differential

terms oh
on ðg; nÞ; o2h

on2
ðg; nÞ and o2h

og2 ðg; nÞ can be approach

by the Taylor series in g = gi and n = nj as follows:

oh
on

ðgi; njÞ ¼
hðgi; nj þ DnÞ � hðgi; njÞ

Dn
� Dn

2

o
2h

on2
ðgi; n0jÞ

ð12Þ
o2h

on2
ðgi; njÞ ¼

hðgi; nj � DnÞ � 2hðgi; njÞ þ hðgi; nj þ DnÞ
Dn2

� Dn2

12

o4h

on4
ðgi; n00j Þ ð13Þ

o2h
og2

ðgi; njÞ ¼
hðgi � Dg; njÞ � 2hðgi; njÞ þ hðgi þ Dg; njÞ

Dg2

� Dg2

12

o4h
og4

ðg0i; njÞ ð14Þ

where n0j 2 ðnj; nj þ DnÞ, n00j 2 ðnj � Dn; nj þ DnÞ and

g0i 2 ðgi � Dg; gi þ DgÞ.
Therefore, Eq. (1) can be discretized as the follows:

b
1

Dn2
½hi;j�1 � 2hi;j þ hi;jþ1� þ ð1þ bHÞ 1

Dn
½hi;jþ1 � hi;j�

¼ 1

Dg2
½hi�1;j � 2hi;j þ hiþ1;j� � Hhi;j þ Hhe þ si;j ð15Þ

where si,j is the error term of Taylor approximation.

After neglect the error term si,j and the difference

equation is shown as

b

Dn2
þ 1þ bH

Dn

� �
hi;jþ1

¼ 1

Dg2
hi�1;j þ

2b

Dn2
þ 1þ bH

Dn
� 2

Dg2
� H

� �
hi;j

þ 1

Dgx2
hiþ1;j þ Hhe �

b

Dn2
hi;j�1 ð16Þ

and

hi;jþ1 ¼ khi�1;j þ ½kð2abþ að1þ bHÞDn� HDg2Þ � 2k�hi;j
þ khiþ1;j þ kDg2Hhe � abkhi;j�1 ð17Þ

where k ¼ 1
abþað1þbHÞDn and c = k(2ab + a(1 + bH)Dn �

HDg2).
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..

.
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77775
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c� 2k k 0 � � � � � � 0

k c� 2k k � � � � � �
0 � � � � � � � � � � � � 0
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0 � � � � � � 0 k c� 2k

2
6666664

3
7777775

ðp�1Þ�ðp�1Þ
�

h1;j
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.
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3
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0

..

.

0
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�
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0 0 0 � � � abk
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3
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ðp�1Þ�ðp�1Þ

h1;j�1

h2;j�1

..

.

hp�1;j�1

2
666664

3
777775

þ kDg2Hhe ð18Þ

where p is the grid number of spatial coordinate.

The ith eigenvalue of the matrix is determined by the

spectral analysis and shows as follows:

li ¼ c� 4k sin
ip
2p

� �2

ð19Þ

Therefore, the condition for stability is

max c� 4k sin
ip
2p

� �� �2
�����

����� 6 1

where i ¼ 1; 2; . . . ; p � 1 ð20Þ
1

4
ðc� 1Þ 6 k sin

ip
2p

� �� �2

6
1

4
ðcþ 1Þ ð21Þ

The stability requires that this inequality condition hold

as Dg! 0, i.e., i = p�1 and p !1

lim
p!1

sin2 p � 1

2p
p

� �� �
¼ 1 ð22Þ

Therefore, that stability region is confined in

1

4
ðc� 1Þ 6 k 6

1

4
ðcþ 1Þ ð23Þ

where c and k are various with the spatial value.
4. The proposed method to estimate the boundary

conditions

In each time step, an iterative algorithm is used to

estimate the periodic boundary conditions at the fin base

while the temperature measured at the fin tip. Some pro-

cesses are needed in solving the inverse problem. There

are the forward problem, the sensitivity problem, the

operational algorithm, and the stopping criterion. The

forward problem is used to determine the temperature

distribution and the sensitivity problem is used to find

the search step in the inverse problem. The operational

algorithm is used to fulfill the process of the inverse

analysis when the solutions of the forward problem
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and the sensitivity problem are available. Finally, the

stopping criterion is shown to stop the iterative process.

4.1. The forward problem

The proposed method is based on a sequential algo-

rithm and the inverse solution is solved at each time

step. Therefore, Eqs. (6)–(10) are limited to only one

time step. The transient problem at t = tm is governed

by the following equations:

b
o
2hðg; nmÞ
on2

þ ð1þ bHÞ ohðg; nmÞ
on

¼ o2hðg; nmÞ
og2

� Hhðg; nmÞ þ Hhe

at n ¼ nm and 0 < g < 1 ð24Þ
hðg; nm�1Þ ¼ hm�1ðgÞ at 0 6 g 6 1 ð25Þ
hðg; nmÞ ¼ hmðgÞ at 0 6 g 6 1 ð26Þ
oh
og

ðg; nÞ ¼ 0 at n ¼ nmþ1 and g ¼ 1 ð27Þ

hð0; nÞ ¼ /T
mþ1 at n ¼ nmþ1 and g ¼ 0 ð28Þ

Here, the values of /T
mþ1 is denoted as the unknown

boundary of the periodic temperature.

The inverse solution of the above problem is ill-posed

and it is often unstable when the measured data is dis-

turbed by the measurement noise. The concept of future

time is used to improve the stability of the estimation in

this research. The concept of the future time makes

assumptions about the behavior of the experimental

data at future time steps, which is included in the mea-

surement to estimate the present state.

When t = tm, the estimated condition between

t = tm�1 and t = tm has been evaluated and the problem

is to estimate the boundary condition at t = tm+1. To sta-

bilize the estimated results in the inverse algorithms, the

sequential procedure is assumed temporally that several

future values of the estimation are constant [8]. Then,

the unknown conditions at the future time are assumed

to be constants equal to their present values, i.e.,

/T
mþ2 ¼ � � � ¼ /T

mþr�2 ¼ /T
mþr�1 ¼ /T

mþr ¼ /T
mþ1 ð29Þ

Here r is the number of the future time.

The forward problem, Eqs. (24)–(28), is solved in r

steps (from t = tm+1 to tm+r) and the undetermined

boundaries are set by Eq. (29).

4.2. The sensitivity problem

In the proposed method, the modified Newton–

Raphson method is adopted to solve the inverse prob-

lem in that the sensitivity analysis is necessary to decide

search step. The derivative o

o/T
mþ1

is taken at both sides of

Eqs. (24)–(28). Then, we have
b
o2X ðg; nmÞ

on2
þ ð1þ bHÞ oX ðg; nmÞ

on

¼ o2X ðg; nmÞ
og2

� HX ðg; nmÞ

at n ¼ nm and 0 < g < 1 ð30Þ

X ðg; nm�1Þ ¼ 0 at 0 6 g 6 1 ð31Þ

X ðg; nmÞ ¼ 0 at 0 6 g 6 1 ð32Þ
oX
og

ðg; nÞ ¼ 0 at n ¼ nmþ1 and g ¼ 1 ð33Þ

X ð0; nÞ ¼ 1 at n ¼ nmþ1 and g ¼ 0 ð34Þ

where Xm ¼ ohðg;nmÞ
o/T

mþ1

.

Eqs. (29)–(33) describe the mathematical equations

for sensitivity coefficient Xm that can be explicitly found.

The equation is linear and the dependent variable Xm is

with respect to the independent variables g and n. There-
fore, the sensitive data can be determined directly

through a finite difference method.

4.3. A modified Newton–Raphson method

The Newton–Raphson method has been widely

adopted to solve a set of non-linear equations. This

method is applicable to solve the non-linear problem

when the number of the equations and the number of

the unknown variables are the same. In the inverse pro-

blem, the number of equations is usually larger than the

number of variables; therefore a modified version of the

Newton–Raphson method is necessary to deal with the

inverse problem.

In the present research, the proposed method formu-

lates the problem from the comparison between the cal-

culated temperature and the one measured directly.

Therefore, the calculated temperature Ucð�i; jÞ and the

measured temperature Umeasð�i; jÞ at the �i-grid of the spa-

tial coordinate and at j-grid of the temporal coordinate

need to be evaluated first. Then, the estimation of the

unknown periodic boundary at each time step can be

recast as the solution of a set of non-linear equations:

Uð�i; jÞ ¼ Ucð�i; jÞ � Umeasði; jÞ ¼ 0 ð35Þ

where �i ¼ 0 and j = m + 1,m + 2, . . . ,m + r. r is the

number of future time.

The number of equations is the number of the future

time r. This detail procedure can be shown as follows:

Substitute the index j from m + 1 to m + r and the

index i ¼ 0, we have

U¼ Uð0;mþ1Þ;Uð0;mþ2Þ;Uð0;mþ3Þ; . . . ;Uð0;mþ rÞ½ �T

¼fbUug
ð36Þ

where bUu is the component of vector U.
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The undetermined coefficients are set as follows:

x ¼ fxvg ð37Þ

where xv is the component of vector x.

The derivative of bUu with respect to xv is solved

through Eqs. (30)–(34) and it can be expressed as

follows:

Wu;v ¼
obUu

oxv
ð38Þ

The sensitivity matrix W can be defined as follows:

W ¼ fWu;vg ð39Þ

where u = 1,2,3, . . . , r and v = 1 and Wu,v is the element

of W at uth row and vth column.

With the starting vector x0 and the above derivations

from Eqs. (36)–(39), we have the following equation:

xkþ1 ¼ xk þ Dk ð40Þ

Dk is a linear least-squares solution for a set of over-

determined linear equations and it can be derived as

follows:

WðxkÞDk ¼ �UðxkÞ ð41Þ
Dk ¼ �½WT ðxkÞWðxkÞ��1WT ðxkÞUðxkÞ ð42Þ

The above derivation is applied at each time step. This

method is able to implement in the multi-sensors� mea-

surement. Under this condition, the number of the ele-

ments in Eq. (36) is based on the number of measured

locations and the number of future times.

4.4. The stopping criteria

The modified Newton–Raphson method (Eqs. (40)–

(42)) is used to determine the unknown vector x defined

by Eq. (37). The step size Dk goes from xk to xk+1 and it

is determined from Eq. (42). Once Dk is calculated, the

iterative process to determine xk+1 is executed until the

stopping criterion is satisfied.

The discrepancy principle [8] is widely used to evaluate

the value of the stopping criterion in the inverse tech-

nique. However, the stopping criterion generated from

the discrepancy principle does not guarantee the conver-

gence of the inverse solution. Therefore, two criteria are

chosen to assure the convergence and to stop the iteration:

xkþ1 � xkk k 6 dkxkþ1k ð43Þ

Jðxkþ1Þ � JðxkÞk k 6 e Jðxkþ1Þk k ð44Þ

where

Jðxkþ1Þk k ¼
Xp

i¼1

Xr

j¼1

Ucð�i; jÞ � Umð�i; jÞ½ �2 ð45Þ

where d and e are small positive values.

The values of d and e are the converge tolerances.
5. Computational algorithm

The procedure for the proposed method can be sum-

marized as follows: First, we choose the number of fu-

ture times r, the spatial size Dg of the problem

domain, the temporal size Dn, the measured grid and

the estimated grid. Given overall convergence tolerance

d and e and the initial guess x0. The value of xk is known

at the kth iteration. Then, the iterative procedure can be

summarized as follows:

Step 1. Let j = m and the temperature distribution at

{hj�1} and {hj} are known.

Step 2. Collect the measurement Umeasð�i; jÞ which are

Y�i
j; Y

�i
jþ1; . . . ; Y

�i
jþr�1.

Step 3. Assume the initial guess x0.

Step 4. Solve the forward problem Eqs. (24)–(28), and

compute the calculated temperature Ucð�i; jÞ.
Step 5. Integrate the calculated temperature Ucð�i; jÞ

with the measured temperature Umeasð�i; jÞ to

construct U.

Step 6. Calculate the sensitivity matrix W through Eqs.

(30)–(34).

Step 7. Knowing W and U, compute the step size Dk

from Eq. (42).

Step 8. Knowing Dk and xk, compute xk+1 from Eq.

(40).

Step 9. Terminate the process if the stopping criterion

(Eqs. (43) and (44)) is satisfied. Otherwise

return to step 4.

Step 10. Terminate the process if the final time step is

attached. Otherwise, let j = m + 1 return to

step 2.
6. Results and discussion

In this section, problems defined from Eqs. (1)–(5) are

used as examples to estimate the unknown periodic con-

ditions in the fin systems. Two examples are used to dem-

onstrate that the proposed method that can be

implemented in the non-Fourier fin heat equations. The

discrete sizes of the problem domain are evaluated by

Eq. (23) and the proposed finite difference method is used

to solve the problem. In example one, the direct solutions

of the non-Fourier fin problem are evaluated. In example

two, an inverse non-Fourier fin problem with the various

input frequency are discussed. The estimated tempera-

ture is imposed on the fin base and the temperature is

measured at the fin tip. The simulated temperature is gen-

erated from the exact temperature in each problem and it

is presumed to have measurement error. In other words,

the random error of measurement is added to the exact

temperature. It can be shown in the following equation:

Tmeas
i;j ¼ T exact

i;j þ ki;jr ð46Þ
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where the subscripts i and j are the grid number of spa-

tial-coordinate and temporal-coordinate, respectively.

T exact
i;j in Eq. (46) is the exact temperature. Tmeas

i;j is the

measured temperature. r is the standard deviation of

measurement errors. ki,j is a random number. The value

of ki,j is calculated by the IMSL subroutine DRNNOR

[18] and chosen over the range �2.576 < ki,j < 2.576,

which represent the 99% confidence bound for the

measured temperature.

Example 1. Consider the problem described in Eqs. (7)–

(11) and the parameters defined as H(g) = eg, A = 0.5,

and he = 0.1.

Fig. 2 shows the temperature distributions for vari-

ous values b at n = 0.5. It can be found that the thermal

wave travels with a short distance for a larger value of b.
This phenomenon is caused by the model induce thermal

waves by delaying the response between heat flux and

temperature gradient. This delay may represent the time

needed to accumulate energy for signification heat trans-

fer and lead to the thermal wave propagation with a

finite speed. The sharp discontinuities of this problem

can be captured by the proposed method. The oscilla-

tion is appeared at discontinuity point of the tempera-

ture response and it can be reduced through a smooth

process. For illustrate, the oscillation is around g = 0.5

that is a discontinuity point of the temperature response

at n = 0.5 when b = 1. When b = 0.1 and n = 0.5, the ori-

ginal thermal wave reflected from the direction right to

left and then interacted with the new thermal wave from

the direction left to right at g = 0.42. As a result, the re-

sult confirmed the validity of the proposed method.

Fig. 3 shows the dimensionless temperature distribu-

tion for various values of x (x = 0.1, 0.5, 1, and 2) when

the relaxation time b = 1. The results show that the loca-
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Fig. 2. Temperature distributions for various values of b (x = 1

and n = 0.5).
tion of the temperature discontinuity is not influenced

by the value of x. Therefore, the speed of the thermal

wave propagation is independent on the oscillation

frequency of the periodic thermal input.

Example 2. The inverse problem consists of finding the

periodic temperature input at the fin base while temper-

ature is measured at the fin tip in Fig. 1. The heat

transfer coefficient and the periodic boundary conditions

are defined as example one. As well, the relaxation time

b is equal to 2.

The periodic input temperature is applied at the side

g = 0 and the temperature measurement at g = 1. The

problems with different frequency (x = 0.1, 0.5, 1, 2

and 5) are testified in the inverse domain. The spatial do-

main is divided into 10 intervals and the size of time step

is 0.1 that calculated from Eq. (23). One feature of the

hyperbolic equation is the heat wave propagates with a

finite speed and it is unexpected to estimate the input

temperature from the measured temperature immedi-

ately. As well, the concept of the future time is adopted

to resolve the problem in order to recover the input tem-

perature from the ‘‘delay-temperature’’ measurements.

The numerical results without measurement are

shown in Fig. 4 (for x = 0.1, 0.5, and 1) and Fig. 5

(x = 2 and 5). In Fig. 4, the numerical results make a

good agreement with the exact solution. However, in

Fig. 5, the results are deviated from the exact solution

due to the coarse sampling time that cannot express

the high frequency of the temperature input. Therefore,

the discrete sizes at spatial and temporal coordinates

need to be refined and they are Dg = 0.02 and

Dn = 0.02. The estimated results by the refined grids

have a better approximation to the exact ones than that

of the previous results (see Fig. 6). Therefore, a fine
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Fig. 5. The estimated results of Example 2 when b = 2, r = 14,

r = 0, Dg = 0.1, Dn = 0.1, and x = 2 and 5.

0

0.5

1

1.5

2

0 2 4 6 8 10 12

ω = 2 Exact

ω = 2 Estimated

ω = 5 Exact

ω = 5 Estimated

Dimensionless Temporal Coordinate (ξ)

E
st

im
at

ed
 P

er
io

di
c 

B
ou

nd
ar

ie
s

Fig. 6. The estimated results of Example 2 when b = 2, r = 72,
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r = 0.05, Dg = 0.02, Dn = 0.02, and r = 72, 74, and 76.
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mesh is necessary in the periodic temperature input with

high frequency.

The inverse solution is also shown in Figs. 7 and 8

when the measurement error is included (i.e., r = 0.05

and 0.1). The measurement errors are set within

�0.1288 to 0.1288 and within �0.2576 to 0.2576, which

implies that the average standard deviation of measure-

ments is 0.05 and 0.1 for a 99% confidence bound,

respectively. In Figs. 7 and 8, the accuracy of the esti-

mated results can be improved by the increasing of the

future time to seventy-four and seventy-six in this

example.

To further investigate the deviation of the estimated

results from the exact solution, the relative average er-

rors for the estimated solutions are defined as follows:
l ¼ 1

Nt

XNt

j¼1

f � f̂

f̂

�����
����� ð47Þ

where f is the estimated result and f̂ is the exact result.

Nt is the number of the temporal steps. It is clear that

a smaller value of l indicates a better estimation and

vice versa.

When measurement errors are not considered, the

relative average errors of the estimated results are shown

in Table 1. From the results, it shows that the relative

errors can be improved through the refined grids for

the frequency input. For instance, the case of x = 2,

the value of relative average error is 0.043757 when

Dg = 0.1 and Dn = 0.1 and 0.003389 when Dg = 0.02

and Dn = 0.02. When measurement errors are consid-

ered, it is seen that the larger measurement error is less



Table 1

The relative average errors of example two when r = 0

Relative average

error Dg = 0.1,

Dn = 0.1 and r = 14

Relative average

error Dg = 0.02,

Dn = 0.02 and

r = 72

x = 0.1 0.002285

x = 0.5 0.010841

x = 1 0.022145

x = 2 0.043757 0.003389

x = 5 0.133720 0.010825

x = 10 0.294296 0.035067
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Fig. 8. The estimated results of Example 2 when b = 2, x = 2,

r = 0.1, Dg = 0.02, Dn = 0.02, and r = 72, 74, and 76.

Table 2

The relative average errors of example two when Dg = 0.02,

Dn = 0.02, b = 2, x = 2, and r = 0.05 and 0.1

Relative

average

error

Relative

average

error

Relative

average

error

Relative

average

error

r = 72 r = 74 r = 76 r = 78

r = 0.05 0.087371 0.050208 0.046375

r = 0.1 0.174555 0.098434 0.080672 0.078355
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accurate than that of smaller error. For example, when,

the value of relative errors is 0.087371 and 0.174555

when r = 0.05 and r = 0.01, respectively (Table 2).

In this section, the first example demonstrates the

validity of the proposed method. In the second example,

the proposed method can be implemented in the non-

Fourier fin problem with the periodic thermal loading.

The numerical result shows that the proposed method

is an accurate and robust method to deal with the
non-Fourier fin problems when the periodic thermal

boundaries are applied.
7. Conclusion

A sequential method has been introduced for deter-

mining the periodic thermal conditions in the inverse

non-Fourier fin problems. The direct solution at each

time step is computed by a finite difference method within

a stable interval. As well, the inverse solution at each

time step is solved by a modified Newton–Raphson

method. The inverse method does not adopt the non-lin-

ear least-squares error to formulate the inverse problem,

but it is employed a direct comparison of the measured

temperature and calculated temperature. Special features

about this method are that no preselect functional form

for the unknown function is necessary and no non-linear

least squares is needed in the algorithm. Two examples

have been illustrated based on the proposed method. In

the first example, the direct solution of a non-Fourier

fin problem is solved. In the second example, the inverse

problem of the non-Fourier fin is demonstrated. The

results show that the proposed method is able to find

both direct and inverse solution of the non-Fourier fin

under the periodic thermal conditions. In conclusion,

from the results in the examples, it appears that the pro-

posed method is an accurate and stable inverse tech-

nique. The proposed method is applicable to other

kinds of inverse non-Fourier problems such as source

strength estimation in the field of heat conduction

problem.
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